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ABSTRACT

An asymptotic method is developed for the solution of linearized

equations governing the flow of a compressible viscous fluid with a free

surface. The approach used here is based upon the ray method expansion

originally developed by Keller. A general uniform asymptotic expansion is

also constructed to remove anomalies in which an amplitude function in the ray

method expansion becomes infinite.
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SIGNIFICANCE AND EXPLANATION

'mevelap-an asymptotic method to solve the linearized Navier-Stokes

equations governing the flow of a compressible viscous fluid subject to free

surface and rigid bottom boundary conditions. The solution of these equations

is assumed to consist of a phase function and an amplitude function. It is

found that the phase function satisfies the Hamilton-Jacobi equation, and the

first order approximation to the amplitude function satisfies a transport

equation. The Hamilton-Jacobi equation may be solved by means of the method

of characteristics, which reduces the equation to a set of ordinary

differential equations. Their solutions determine a family of time-space

curves called rays. The transport equation can be easily integrated along

each ray to yield the so-called conservation relation. At certain anomalies

the amplitude function becomes infinite and a uniform expansion is then

constructed to remove these difficulties.

... I k.( J

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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RAY MZTHOD FOR FWV OF A COMPRESSZBLE VISCOUS FLUID

K. C. Shen

I. Introduction

Since the ray method was systematically developed by Keller and his co-

workers, much progress has been made in recent years and a review of the

method can be found in Keller (1]. Although the ray method was first

formulated for electromagnetic waves and has been extended to many other

related areas, it has also found a lot of interesting and fruitful

applications to the wave propagation problems of a fluid, especially with a

free surface. In the past decade, many results have been obtained for the

case of an irrotational, inviscid or incompressible, viscous fluid with free

surface. However, only recently the Navier-Stokes equations governing the

motion of a compressible viscous fluid have received much attention, as shown

in the review article by Solonnikov and Kazhiklov (2]. At present very few

solutions of the linearized Navier-Stokes equations subject to free surface

conditions are available, to say nothing of the nonlinear ones. It should be

of great interest to develop an asymptotic method to study these equations.

Indeed their physical applications abound, for example, wave propagation in

the atmosphere or ocean. A compressible viscous fluid may be also used to

model flow in porous media, a discussion of which may be found in Bear (3].

In the derivation of the ray method by Keller [1] for surface waves on

water over a variable bottom, upon which our approach is based, a wave-like

solution with an amplitude function and a phase function was assumed, and the

Department of Mathematics and the Mathematics Research Center, University of
Wisconsin, Madison, WI 53705.
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boundary conditions at the free surface and the rigid bottom were taken into

account as an integral part of the formulation of the method. The three-

dimensional problem is reduced to the problem of constructing rays and wave

fronts on the two-dimensional equilibrium free surface, and the solution of

partial differential equations is reduced to the integration of ordinary

differential equations along rays. This method has since proven very

successful in dealing with the problem of wave propagation in a fluid with a

free surface (Shen, [5]). For the problem considered here, we adopt the form

for the ray method expansion used in Cohen and Lewis [61, Voronka and Keller

[7]. It is also a well known fact that the ray method expansion in its usual

form may fail at anomalies where the amplitude function become infinite. We

then use a modified version of the uniform asymptotic expansion in Shen and

Keller [8 to remove these difficulties. The uniform asyptotic expansion at a

caustic was first developed by Ludwig (9] and Krautsov [101.

The approach used here may be sketched as follows: We consider a shallow

layer of a compressible viscous fluid supported below by a rigid bottom and

bounded above by a free surface. The rigid bottom is assumed to vary slowly

in two horizontal directions. A large parameter 0 is introduced as the

ratio of the horizontal length scale L to the vertical length scale H. The

governing equations are nondimensionalized in terms of the dimensionless

variables appropriately chosen. Furthermore, we also assume that the constant

viscosity is of small order so that a Reynolds number to be defined is

large. First we construct the usual ray method expansion involving a phase

function and an amplitude function. By substituting the expansion in the

equations, we obtain the Hamilton-Jacobi equation for the phase function,

which in turn determines a family of bicharacteristics called rays. The

successive approximations to the amplitude function may be obtained by
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integrating transport equations along the ray. The construction of a uniform

asymptotic expansion is motivated by the form used in [9), (101, and based

upon an ordinary differential equation as a comparison equation. A transfor-

mation is discovered to reduce the results for the ray method expansion to

those for the uniform asumptotic expansion. By appropriately chosing the

coefficients in the comparison equation and a conservation relation along each

ray the amplitude function becomes finite at an anomally.

We formulate our problem and construct the ray method expansion in 52.

The uniform asymptotic expansion is given in 13. Discussions about some

special cases and possible extension of the results obtained are presented in

54. Some of the detailed derivations are deferred to the appendices.

I-3

__________________-3 ___ ______



2. My Method Zxpansion

The linearized Navier-Stokes equations governing the motion of a

compressible viscous fluid are assumed to be the following:

* + (POu) + (Pov) 0 + (P0  • - 0 , (1)
t x y z

oU •- -p * + pVu + (ui/3)(V• u ( , (2)
t x x

p~v •=-p + ~i V v + (j/311V, •u )~ , (3)

00v _* + * V

OW o - , g + i + (u/ /3l(• u ) ( 31)

t z yp•2

p (dPO/dpO)p ' (5)

subject to the boundary conditions:

At z 0,

u + w 0 (6)

z z

v + w . 0  , (7)
z y

-p + Pog0 - (2ti/3)V. * u + 2UV = 0 , (8)

-w - 0 ; (9)
t

at z -h (x ,y), u - 0 (10)

Here x ,y are horizontal coordinates and z is positive upward, t is

the time, V, (3x/ x 3/ay0, * /ze*), u - (ue,v ,w ) is the velocity, p0  is

the equilibrium density, considered as a function of p0 1 the equilibrium

pressure, P is the density, g is the constant gravitational acceleration,

is the constant viscosity, z - n is the equation of the free surface

and z -h is the equation of the rigid bottom assumed to vary slowly in

-4-



the x and y directions. We note that PO  to a function of s

satisfying p0 * -I0  0 at a - 0.

Motivated by the assumptions made before, we introduce nondimensional

variables and parameters as below:
J .- 2' *-2'* * -2 * 1,

(x'y'z) - (0-2x* 00 y *,a )/H, t = 0- t*/(Jlg)/

- (u,v) - (u *,v/(gu) /, w *Ow /(g) 2

p- p P/p 0 (° )gH P0 - P0 /[P 0 ( ° )g u ], p - p /P0 (O)

P0 - P0/P*(O), 1n - A*/H. h - h/* /H

R - Po(0) (lH)'2 =/Ra 0 - L/H

where we assume R is large and without lose of generality we set R B. In

terms of the nondimensional variables (1) to (10) become

Pt +  • (Pq) +B(OPOW) z  (11)

a0% + Vp- ' q + $q_. + (1/3)V(V.oq) + (1/3)CVw , (12)

OoWt + B3 (p3 +p) 13 9 W + Wzz + (1/3)(Vaq)z  (0/3)W zz (13)

0 - pO(po)p 1 (14)

at a 0,

0 q + VW- ,(15)!

2 1-1
0 (p-i) + (2/3)(0 V q + W3) - 2w - 0, (16)

nt - O W =0 ;(17)

at z -h,

q O, W 0 , (18)

where V - (0/3x, 3/y)

-5-



For large B, we assum that the solutions q, W, p P and n1 possess

an expansion of the form

* exp[-B S(t,x,y)](# 1 + 0 -12 + c"2 +''') ()

where 8 is called the phase function. Substituting (19) in ('I to (18), we

obtain a sequence of equations and boundary conditions fox succ3s.;ive

approximations to the amplitude function. The equations for the irst

approximation are

wOP1 - p0k * q + (p0w) - 0 , (20)

WPl 0  -kpM q1  , (21)

PIZ -PI(22)

p1 - p0 (p 0 )P 1  ; (23)

at z -0,

ql 2 M 0, P1 ,rl wnl -Wl -0 ; (24)

at z - -h,

q1  0, W1  0 , (25)

where W M -St, k VS

From (22) to (24), it is obtained that

I exp(-fo p0 (po)dz] - nIp O , 1 - p p ri1  (26)

where pOz W -"0' 00(0) - 1 have been used. Now let

q- rnQ 1  , (27)

and it follows from (21), (24) and (25) that

Qlzz - p0 1 - -PO , (28)

Q 1Z M 0 at z - 0 , (29)

Q 1 " 0 at z- -h • (30)

Assume that the Green's function of (28) to (30) is given by G(z,z',wh).

Then

-6-



QI -f %oG(z'•W"h)dz' (31)"h

Finally, we integrate (20) and make use of (25) to obtain

W1 - t.n(p 0 - P (-h)) + k2v ,'h 3 o1l • (32)

whore k - lkI. However, w, must also satisfy (24) and it follows that,

assuang n, )d 0

wp0 (-h) - k 2 f_ P0Q 4z• or k2 - Hlw,h) (33)

which yields an equation in the form of the Hamilton-Jacobi equation, and may

be solved by the method of Characteristics. The corresponding characteristic

equations are

dt/da - ijHW• dr/do - 2;k. dw/da - 0

dida - -PVH, dS/do - (2k
2 - w)

where m is a proportionality factor and r - (x,y). The solutions of (34)

determine a two-parameter family of bicharacteristics

t - t(0,01 1 02 ), r r(,0 1102 ) , (35)

which will be called rays. From (34) we also observe that w is constant

along a ray, and the phase function is determined by

S = SO 0 ) + f* p(2k - w)do (36)
0 0

where 8(a0) is the value of S at some point a - o0 on a ray.

To determine we proceed to the equations for the second

approximation

Op -P k 2 + V.(02 o 2 ) + (POW2 ) z - 0 (37)

(O01q 2 + p0qt - kP2 + VpI - q2 za - (1/3)kW1z (38)

P2z '0 -12 # (39)

P2 a PO(pO)p 2  , (40)

at z 0,

q2  0, P2 n2 W12 
+ n lt 2  0 (41)

at rn-h,

-7-



q2 = 0, 2  0 • (42)

From (39) to (41), we obta .n as before that

p- Po 2' 02 - p )(po)pon2  (43)

Now we let

12 - (kn 2 - Vnl)Q 1 + Q (44)

where Q, satisfies (28) to (30). Then it follows from (38), (41) and (42)

that

Q2zz -WP0Q2 = p0qlt + (1/3)kW1 z '(45)

2z 0, at z0 , (46)

Q-0, at z - -h • (47)
2

Integrating (37) with respect to z from z - -h to z 0 and making use

of (27), (33), (41) and (42), we have

h [tP;(po)Po + POQ1k " Vl - 0 + V(Pok(8Q 1 )]d (48)

+ lit =0.

Upon multiplying (48) by 2n I and rearranging the terms, we finally obtain

2 +7*i 2  2 , (49)
(InI t + V(In I /dt) - A2 - 0 , (49)

where

I W p0 (-h) - k2 f°h PoQ 1W dz

A - k 2 f0 P 0(Z) '0h G(z,z',w,h)[wp ze + k 2Q Wz)p (zl)]dz'-f h  0o(- h  0 ) 0-

The detailed drivation of (49) is deferred to Appendix A. Let J(o) be the

Jacobian of transformation from the ray coordinates a, a1, 02 to the t, x,

y coordinates, where we choose t - a. By the well-known identity

j lJ/dt - V•(dr/dt)

(49) reduces to

d(IJn1 )/dt - AJI 2 (50)



Integration of (50) alonq a ray yields

JrzI 2 WWI-ft AZldt] - constant • (51)
0

he seen from (51) n may beoame infinite at anomalies where, for example,

J(t) - 0. To remove them, we shall construct a uniform asymptotic expansion

in the next section.

9 -9-



3. Uhiform asymptotic expansion

The construction of a uniform asymptotic expansion is based upon the

approach developed in [11, and a discussion of the method may be found in

[8]. Assume that q, v,. po 0 and n possess an asymptotic expansion of the

form

* W exp(-8)[# (1)vV0) + Bv100 (2 )V1(,lvOl , (52)

where V(8 V) satisfies the second order ordinary differential equation

V"V + 08VPCV(O V- 2-2vQ2(EV C 0:VU(8 C) + Cp v(v) - B2"2Q2(C)v(8 C) - 0

(53)
) -1 (i) +-2# (i)

~ 4,2 +. * +.-- , i. - 1,2

6 and C are functions of t and r only, v is a nonnegative number, and

P(M], Q() are functions to be chosen. We define

t (1) (2) -1 -2
IQ# 4 1 + 0-1 t 0-2 j(4

4* - 1 , ,2 + 8 *3+ " (54)

1 t  fCQ(,)dz', D* - (Q, + QP) , (55)

and substitute (52) for q, w, p, p and ni in (10) to (17). Next we collect

the coefficients of V( Vk) and V'( Vk) and set them to zero. Then we

multiply the coefficients of VO by Q8- v+l  and add them together and

subtract them from the corresponding coefficients of V. Making use of (54)

and (55), and omitting the superscripts * we obtain

-- O~pq) ~p(2) -(2)
(PW -p 0 qk + + Pt + V-CP~q) D(P(2)t + p0 q 1  V) - 0 * (56)

(P~q - p) + + Vp D(poq 2 C + p(V)

(57)
-1

- Oq - (1/3)kvz + O("

P3 + P  - 1( ) (58)

1- p(pO( p (59)

at 2 O,

-10-



+ o(0 2) -O p- + 0(0 )- 0,
(60)

0(in -) + nt - DEt (2 -( 0 ,

at z -h

q* 0, wi (61)

where 0(0l)1 0(0- 2 ) denote term of orders 0- 1 and 0-2 respectively and

will not be used in the sequel.

The equations for the first approximation are

WP I Pi0
'q + (p0ow)." 0, (62)

P0 l 4 1 a qs (63)

pit W "01 •(64)

-1 pM(pO)p 1 l (65)

at z0, ql - 0, P1, m 1  WnI - 0 , (66)

at z - -he ql 0 v W 0 . (67)

which are the sme as (19) to (24). The results obtained for the first

approximation in the ray method expansion can be carried over without change,

and the Hamilton-Jacobi equations for St are

"01 ( -h ) - (k*)2 f0h e. p0 d (68)

the solutions of which determine two two-parameter families of rays

. ,2), r - r (0,01 002 ) . (69)

To obtain a conservation relation for n,, we need the equations for the

second approximation

wp2  
t " p0 q2

" I + V.(P 0 q1 ) + (P0 w2 ). " D(P- 2t

(70)
-( 2).

PO~q2 + -~l kp2 + VpI D(P q E + p (2)
0 ~ p 1 t

(71)
q - (1/3)kM .is Is

-11-



P2z 
+ P2 m 0 , (72)

P2 " P0(p 0 )p2 U

at X 0,

q2  0, P2 n2  ' (73)

(2)
o%- w + fl 1 -DE n, 0o 1 (74)

at x z -h, q2 O, w2 m 0 • (75)

ro (72) to (73), we easily obtain that

P2 a P0 12 P2 ' 00(P0 )P0 n2  * (76)

As seen from (71), (73) and (75), we may let

2 " ( -2 "VnI)Q 1  2 + 3  
(77)

where Q 1, Q2  satisfy (27) to (29), and (45) to (47) respectively, and '3

satisfies

-Q -(2)- (2)V )B3zz W" w0 Q3 M "Dl 0 q I t + P 1(6

3z 0 at z - , (79)

Q 3 = 0 at z - -h • (80)

we now integrate (70) with respect to z from s - -h to z - 0, and make

use of (27), (68), (74) and (75) to obtain

Oh [t (O + PoQlkVrl - PO;. 2 + V-(po kI 1Q)]dz + nlt

(81)
- - (2) -(2). (2)

-h pO-k 3da + -h D(P1  S + PC V)dz + DEtr n .I

Note that the left hand side of (81) is the same as (48). We multiply both

sides of (81) by 2n,, and follow the same derivation given in Appendix A

to obtain

2 + 0 2 2
(Ini)t V.2k '°h n 1 0ogda - An1

(82)
"O 2 +o (2) - (2)2h I k*•3  I fq V1)dz + D I

In Appendix 2, we show that if

-12-WMISM-



T1 IRMC1 and 2R' - sRdQ (63)

Thn satisfies the sone Conservation relation In the ray method

expansion, and it follows that, along a ray

J*Xit3 2 ("*) 2 exp(..ft A(X*) 1 'dtJ - constant .(64)

1 jtr-0
From (5S) and (79), we find that

R d '2*xpj1/2) f P(C-)dglj, P [ltog (R (85)

At an anomaly, we may choose R so that R l tend to a finite limit

there. P, Q and jm should be suitably chosen to make (53) as simple as

possible.

-13-



4. Discussion

To apply the present results to flow of a compressible viscous fluid with

a fixed upper boundary, we simply replace the boundary conditions at z - 0

by q - 0, w - 0, at x - H, the equation of the upper boundary, and n1

by p1 (B), the value of p1  at z - H. The Hamilton-Jacobi equation assumes

the form

w(P (-h) - P (H)) - k2 fh Q P dz

where Q, satisfies (29) with Q1 - 0 at z - -h, H. The conservation

relation along a ray is still the same as (50) except I and A are now

given by

I- P(-h) - p (H) - k 2 fH Q P dz

A H Z oGz'whH)(wp 2 Q('P('IzA", 0-h ( f_,, + "1

The uniform asymptotic expansion for this case can also be dealt with

accordingly.

As an illustration of the construction of a uniform asymptotic expansion,

we consider a strictly convex caustic where 3(t) - 0. Following 19], we

choose p - 2/3, Q &1/2, and R- 9 1/4. From (85), P - 0 and (53) becomes

the Airy equation

V"O2/3) V- B2/3 C V(B 2/3 C) - 0

If there are two caustics corresponding to - 0, E - V, then (53) becomes

the equation for Weber functions

V( - 02 M 1 -O)v(M) - 0 ,

1/4 1/4 2
where v - 0, R- ( -&) P - 0 and W - . The contructlon of a

uniform asymptotic expansion at a line of zero depth may follow the procedure

developed In [121, and we shall omit the derivation here.

-14-



Finally we make mome remarks regarding the possible extensions and

applications of the ray method. If the fluid region is channel-like, that is,

the rigid bottom varies slowing in one direction only, say the x

direction. In this case, we introduce the following nondimensional variables

-2 *
(x'y,z) - (6 x ,y ,z )/H

- (v,v) - O(v ,v )/(gfl) I

and the remaining ones are the same as before. Then we assume 8 - S(t,x)

and the ray method can be carried out without much difficulty.

In this paper we only consider the case of large Reynolds number R.

With a change of the stretched variables, the ray method can also be extended

to the case of finite R, but the derivations will be much more involved. We

also note that the results obtained are only valid for positive phase

function 8 and then the nonlinear term omitted will have a negligible

effect. One of the interesting applications of the method to physical

problems is to consider a point source on the free surface, for example to

model a well in an unconfined aquifer. Mathematically, ve simply add a Dirac

distribution on the right-hand side of (17). First we construct the rays from

the source based upon (33) and (34). The phase and amplitude functions are

given by (36) and (51). Then the initial conditions for them are determined

by the asymptotic expansion of the exact solution of a canonical problem based

upon a system of boundry layer equations near the origin. The procedure to

solve a similar problem may be found in (11).

-1S-
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Appendix A

In (48). we first note that

2,,1 -h "O1 '"I + 2 '-h n Iv.(P0 k1 1 )dz

Oh -- O I- 2V*J]. knlOO0Qldz ,

where Q1 - 0 at z - -h. Next from (27), (45) to (47),

'2-Ih G(z'"" h)[p((z')(kQ )t + (1/3)kw, Ids

We collect the terms with time derivatives in (48) to obtain

2nn tif°h 0 P;(po)Pod + 1, - 21n, -h , '-kpo(z')rn Q(C'))t X

G(z,z' ,W,h)dz'dz

- (I2)t Po(-h) + 2 '-h i°(kilQ1)t T11Q (W')p (z')dz'

M 2 2 0 2 2 .
[tCPol-h) + 1 '-h k1 2 p0dz']

Where we have changed the order of integration and made use of the symmetry

property of the Green's function in the second integral. Hence, (48) assumes

the form

a n2 ( (-h) + 0  2 2 ,} ---2

T- [ 0 -h k 
Q P00dz1 + 2V o -h k01PoQ1dz

2

Finally we go back to (33). Aseaing w as a function of i, we have, by

differentiating both sides of (33) with respect to ki where i l (kl1k2).

w/3k1 - 'i/dt- 2 k i °. poQ l dz[%(-h)-k 2  h Q1 dp I- . (A.2)

We show that

- h pQ 2dz - 0-h o (A.3)

From (28) to (30), we find that Q satisfies

Qlwzz " PO lWQ1 " OQ1'

Q1z .0 , at z 0

o 0 , at z - -h

-16-



nonce,

It follows that

'-hP p(Z)Q1 (:)da o J P 0(s) fo G(x,s',woh)p (:')Q (al)dz'

-h 0 1d

by Integration by parts, symetry of the Green's function and (31). From

(A.1) to (A.) (49) folio".

-17-



Appendix a

We substitute n 1 - R(C)C, in (82) and obtain

a2 ( ?t) + 27.kj OP.QCd% JL521 -2RR' EXC~t

+ 2VC-l J C dl + R2 J"h 2C,(pk.Qdz (.1)
-h 10O1 -h 1 0

(2) -2)(2D(C, * C+ "IVC) + DC (21Idz - P" ,

(2) + 1wheoe Cl (C " )/(2Q). If we can show that the RHO of (3.1) is zero

und*r (63), then C1  satisfies the sam transport equation as (49), and (84)

follows.

From (26), (27) and (54),

VC - (k"- - )/(2Q), Ct - ((.' - N)/(2Q) ,

p (2).P o(1n 11 - )/(2Q), P (2) . PPcn, - n )/(2Q)

-(2) (+I - -
I ( 1Q - k n IQI)/(2Q) .

We substitute them in the RES of (3.1) and consider the upper sign first. The

coefficient of (C+)2 is

+ + +) + f*p0+d(..-)z /2 (k -. ; ) . 0h 0Q

which can easily be shown to be zero by use of (31) and (A.4). The
-

coefficient of C [ is found as

.+ 3 (W+"'-)f-h. POW h p0 (z')G (z,z',w+,h)Q(z')dz'dz

(3.2)

+/f. P 0( ) / 0.  (z')(G+(z,z',w-,h) - G(z,a',w-,h)Jdz'dz ,

where we have used the relations

(d" (h)- (k t ) 10 h pQ tdz.

To show (3.2) is zero, we apply (28) and (30) for Q1a

I zz 0 o ' 33

13 0 at 2 0 , (5.4)

Iss

A



0~n at a--h (5)

Then lot 0~d M uV), and we have frem (3)

(Q11LQ) -(Q1.CQ 1 ) + (Q-P 0 Qt

- QIu- 0W Q;) - (Q;'-P0 ) 1 (30

By the boundary conditions (3.3) and (3.4), (3.5) becomes

- )(P0QOQ) + (P01Q) (PQ1) - 0

The LBO8 of the above equatIon reduces to (3.2) by integration by parts,

symmestry of the Greense function and (31). Similarly we can also show that

the REMS of (3.1) coresponding to the lover sign is also equal to zero.
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